Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Dy₂Ni₇Sn₃: a new member of the CaCu₅ family of intermetallics

V. Romaka,^a* R. Gladyshevskii,^a B. Marciniak^b and V. Pavlyuk^a

^aDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str. 6, 79005 Lviv, Ukraine, and ^bJan Dlugosz University of Czestochowa, Institute of Chemistry and Environmental Protection, al. Armii Krajowej 13/15, 42200 Czestochowa, Poland

Correspondence e-mail: romakav@yahoo.com

Received 13 March 2008 Accepted 8 April 2008 Online 26 April 2008

Single crystals of didysprosium heptanickel tritin were synthesized from the constituent elements by arc-melting. Two of the five Ni atoms are at general sites and all other atoms are at sites with either twofold or m symmetry. The structure contains 'DyNi₅Sn' and 'DyNi₂Sn₂' fragments and represents a new member of the CaCu₅ series of intermetallics.

Comment

Investigation of the Dy-Ni-Sn ternary system revealed the presence of a large number of Ni-enriched compounds (Romaka et al., 2007), including a new stannide with the composition Dy₁₈Ni₅₅Sn₂₇. After the structure of this new stannide had been solved and refined, the crystal chemistry analysis was carried out. Interatomic distances (Table 1) in the structure are in good agreement with the sum of the corresponding atomic radii. No shortening of the interatomic distances between Sn atoms caused by covalent bonding (inherent in compounds with high Sn content) was observed. Most ternary intermetallics are constructed from fragments of the most stable binary compounds and the structure analysis of already known Ni-enriched stannides shows that all are derived from the binary DyNi₅ compound, which crystallizes in the CaCu₅ structure type (Wernick & Geller, 1959). The crystal structure of Dy₂Ni₇Sn₃ (Fig. 1*a*) belongs to the CaCu₅ family and contains 'DyNi₅Sn' (denoted I) and 'DyNi₂Sn₂' (denoted II) fragments (Fig. 1b). The 'DyNi₅Sn' fragment seems to be very similar to that in DyNi₅Sn (Skolozdra et al., 1996), but with a different position for one inner Ni atom. In other respects, both fragments are similar. The 'DyNi₂Sn₂' fragment is a hypothetical structure because there is no compound with this stoichiometry in the Dy-Ni-Sn system. However, this fragment resembles the deformed fragment in the YB₂C₂ structure (Bauer & Nowotny, 1971). Stacking of the 'DyNi₅Sn' and 'DyNi₂Sn₂' fragments in the sequence I-II-I'-I–II–I' may produce the structure of $Dy_2Ni_7Sn_3$ (Fig. 1*b*). The main feature of this compound is the manner of stacking of the 'DyNi₅Sn' and 'DyNi₂Sn₂' fragments. There is no possibility of building fragment I directly from the previous fragment (I') because the shared sides of these fragments are shifted and stacked along the Dy plane (Fig. 1*b*).

By analyzing the Ni-enriched $DyNi_5Sn$, $Dy_2Ni_7Sn_3$ and $DyNi_3Sn_2$ (Skolozdra *et al.*, 1988) ternary stannides of the Dy–Ni–Sn system, it was found that all of them were derived from

Figure 1

(a) The unit cell of the title compound, with displacement ellipsoids drawn at the 95% probability level and (b) the stacked fragments in the Dy₂Ni₇Sn₃ structure. [Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} - y$, -z; (ii) -x, $\frac{1}{2} - y$, $-\frac{1}{2} + z$; (vii) -x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (viii) $-x + \frac{1}{2}$, -y, $z + \frac{1}{2}$.]

Figure 2

The structure relationships of the Dy polyhedra in the $DyNi_5$ - $DyNi_5$ Sn- Dy_2Ni_7 Sn_3- $DyNi_3$ Sn_2 series.

the binary DyNi₅ genetic prototype. Structure relationships between these compounds are shown in Fig. 2. While advancing from binary DyNi5 to ternary DyNi5Sn, the coordination polyhedron of the Dy atom splits into two different polyhedra: one replicates that of the binary compound and the other is slightly deformed, but still very similar to that in the DyNi₅ compound. Passing through DyNi₅Sn to Dy₂Ni₇Sn₃, the polyhedra for the Dy atoms become deformed, but the motif of the DyNi₅ fragment can be easily recognized. The Dy polyhedra of the last stannide, DyNi₃Sn₂, are almost analogous to the initial Dy polyhedron in the DyNi₅ compound.

Experimental

A sample with nominal composition Dy₁₈Ni₅₅Sn₂₇ was prepared by arc-melting the component Dy (99.9 wt.%), Ni (99.99 wt.%) and Sn (99.999 wt.%) metals on a water-cooled copper hearth under a protective Ti-gettered argon atmosphere. The obtained alloy was annealed at 870 K for 720 h in an evacuated silica ampoule and finally quenched in cold water. A crystal of Dy₂Ni₇Sn₃ suitable for singlecrystal X-ray diffraction analysis was extracted directly from the annealed sample. The chemical composition of the crystal was determined via EDX (energy dispersive X-ray) analysis on a Carl Zeiss DSM 962 scanning electron microscope equipped with a Link EDX system, giving 18.2 (1)% Dy, 55.5 (3)% Ni, and 26.3 (2)% Sn. These values are very close to the composition calculated from the structure refinement.

Crystal data

Dy₂Ni₇Sn₃ $M_r = 1092.04$ Orthorhombic, Cmca a = 8.5964 (2) Å b = 23.6415 (6) Å c = 7.5383 (2) Å

Data collection

Oxford Diffraction Xcalibur diffractometer with a CCD detector Absorption correction: analytical (de Meulenaer & Tompa, 1965) $T_{\min} = 0.040, T_{\max} = 0.143$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.067$ S = 1.241232 reflections

V = 1532.02 (7) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 45.49 \text{ mm}^-$ T = 298 (2) K $0.30\,\times\,0.20\,\times\,0.17$ mm

6228 measured reflections 1232 independent reflections 1033 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.034$

```
65 parameters
\Delta \rho_{\rm max} = 2.63 \ {\rm e} \ {\rm \AA}^{-3}
\Delta \rho_{\rm min} = -3.04 e Å<sup>-3</sup>
```

The structure solution and refinement were also performed in the noncentrosymmetric space group C2ce but were less satisfactory and resulted in larger R indices and atomic displacement parameters.

Table 1

Selected	bond	lengths	(A).
----------	------	---------	------

-			
Ni1-Sn3	2.5107 (14)	Ni2-Dy1 ⁱⁱ	3.0258 (13)
Ni1-Ni2 ⁱ	2.5207 (17)	Ni3-Ni4	2.587 (2)
Ni1-Ni5 ⁱⁱ	2.5277 (19)	Ni3-Sn1vi	2.616 (2)
Ni1-Ni1 ⁱⁱⁱ	2.606 (2)	Ni3-Sn1 ^{vii}	2.672 (2)
Ni1-Ni4	2.6435 (19)	Ni3-Sn2	2.6849 (11)
Ni1-Sn3 ⁱ	2.6533 (12)	Ni3-Dy2 ^{viii}	2.9657 (10)
Ni1-Sn2	2.6707 (14)	Ni3-Dy2	3.3986 (16)
Ni1-Dy1	2.9332 (13)	Ni4-Ni5 ⁱⁱ	2.396 (2)
Ni1-Dy1 ^{iv}	2.9974 (12)	Ni4-Sn2	2.5990 (10)
Ni1-Dy1 ⁱⁱ	3.0792 (13)	Ni4-Sn1 ⁱⁱ	2.8050 (19)
Ni2-Ni2 ^v	2.385 (2)	Ni4-Dy2	3.0171 (14)
Ni2-Ni4 ⁱ	2.5360 (14)	Dy1-Ni5 ^{vii}	2.9698 (19)
Ni2-Sn1	2.5656 (13)	Dy1-Sn2	3.2630 (7)
Ni2-Sn2 ⁱ	2.5921 (12)	Dy1-Sn3	3.2791 (7)
Ni2-Ni5 ^{iv}	2.6381 (15)	Ni5-Sn3	2.5213 (10)
Ni2-Sn3	2.6868 (13)	Ni5-Sn1	2.5733 (19)
Ni2-Dy2 ⁱ	2.8676 (12)	Sn1-Dy2 ^{vii}	3.1942 (8)
Ni2-Ni5	2.8758 (17)	Sn1-Dy2 ⁱ	3.3016 (7)
Ni2-Sn1 ^{iv}	3.0002 (13)	Sn2-Dy2	3.1667 (6)

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (ii) $-x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) -x, y, z; (iv) $x + \frac{1}{2}$, $y, -z + \frac{1}{2};$ (v) $-x + \frac{1}{2}, y, -z + \frac{1}{2};$ (vi) $x, y - \frac{1}{2}, -z + \frac{1}{2};$ (vii) $-x, -y + \frac{1}{2}, z + \frac{1}{2};$ (viii) $-x + \frac{1}{2}, -y, z + \frac{1}{2}.$

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

The work was supported in part by the Ministry of Ukraine for Education and Science (grant No. 0106U001299).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ3047). Services for accessing these data are described at the back of the journal.

References

- Bauer, J. & Nowotny, H. (1971). Monatsh. Chem. 102, 1129-1145.
- Brandenburg, K. (1999). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany,
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
- Oxford Diffraction (2005). CrysAlis RED and CrysAlis CCD. Versions 1.171.29.2. Oxford Diffraction Poland, Wrocław, Poland.
- Romaka, V. V., Gladyshevskii, R. E. & Tkachuk, A. V. (2007). 10th International Conference on Crystal Chemistry of Intermetallic Compounds, Collected Abstracts, p. 36.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Skolozdra, R., Szymczak, R., Szymczak, H., Romaka, L. & Baran, M. (1996). J. Phys. Chem. Solids, 57, 357-363.
- Skolozdra, R. V., Komarovskaya, L. P. & Akselrud, L. G. (1988). Izv. Akad. Nauk. SSSR Neorg. Mater. 24, 1490-1493.
- Wernick, J. H. & Geller, S. (1959). Acta Cryst. 12, 662-665.